Functions

This is archived documentation for InfluxData product versions that are no longer maintained. For newer documentation, see the latest InfluxData documentation.

Use InfluxQL functions to aggregate, select, and transform data.

AggregationsSelectorsTransformations
COUNT()BOTTOM()CEILING()
DISTINCT()FIRST()DERIVATIVE()
INTEGRAL()LAST()DIFFERENCE()
MEAN()MAX()FLOOR()
MEDIAN()MIN()HISTOGRAM()
SPREAD()PERCENTILE()MOVING_AVERAGE()
SUM()TOP()NON_NEGATIVE_DERIVATIVE()
STDDEV()

Useful InfluxQL for functions:

The examples below query data using InfluxDB’s Command Line Interface (CLI). See the Querying Data guide for how to query data directly using the HTTP API.

Sample data

The examples in this document use the same sample data as the Data Exploration page. The data is described and available for download on the Sample Data page.

Aggregations

COUNT()

Returns the number of non-null values in a single field.

SELECT COUNT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Count the number of non-null field values in the water_level field:

    > SELECT COUNT(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               count
1970-01-01T00:00:00Z	 15258

Note: InfluxDB often uses epoch 0 (1970-01-01T00:00:00Z) as a null timestamp equivalent. If you request a query that has no timestamp to return, such as an aggregation function with an unbounded time range, InfluxDB returns epoch 0 as the timestamp.

  • Count the number of non-null field values in the water_level field at four-day intervals:

    > SELECT COUNT(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)

CLI response:

name: h2o_feet
--------------
time			               count
2015-08-17T00:00:00Z	 1440
2015-08-21T00:00:00Z	 1920
2015-08-25T00:00:00Z	 1920
2015-08-29T00:00:00Z	 1920
2015-09-02T00:00:00Z	 1915
2015-09-06T00:00:00Z	 1920
2015-09-10T00:00:00Z	 1920
2015-09-14T00:00:00Z	 1920
2015-09-18T00:00:00Z	 335

COUNT() and controlling the values reported for intervals with no data


Other InfluxQL functions report null values for intervals with no data, and appending fill(<stuff>) to queries with those functions replaces null values in the output with <stuff>. COUNT(), however, reports 0s for intervals with no data, so appending fill(<stuff>) to queries with COUNT() replaces 0s in the output with <stuff>.

Example: Use fill(none) to suppress intervals with 0 data

COUNT() without fill(none):

> SELECT COUNT(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T21:41:00Z' AND time <= '2015-09-18T22:41:00Z' GROUP BY time(30m)
name: h2o_feet
--------------
time			               count
2015-09-18T21:30:00Z	 1
2015-09-18T22:00:00Z	 0
2015-09-18T22:30:00Z	 0

COUNT() with fill(none):

> SELECT COUNT(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T21:41:00Z' AND time <= '2015-09-18T22:41:00Z' GROUP BY time(30m) fill(none)
name: h2o_feet
--------------
time			               count
2015-09-18T21:30:00Z	 1

For a more general discussion of fill(), see Data Exploration.

DISTINCT()

Returns the unique values of a single field.

SELECT DISTINCT(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Select the unique field values in the level description field:

    > SELECT DISTINCT("level description") FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               distinct
2015-08-18T00:00:00Z	 between 6 and 9 feet
2015-08-18T00:00:00Z	 below 3 feet
2015-08-18T01:42:00Z	 between 3 and 6 feet
2015-08-26T04:00:00Z	 at or greater than 9 feet

The response shows that level description has four distinct field values. The timestamp reflects the first time the field value appears in the data.

  • Select the unique field values in the level description field grouped by the location tag:

    > SELECT DISTINCT("level description") FROM h2o_feet GROUP BY location

CLI response:

name: h2o_feet
tags: location=coyote_creek
time			                distinct
----			                --------
2015-08-18T00:00:00Z	  between 6 and 9 feet
2015-08-18T01:42:00Z	  between 3 and 6 feet
2015-08-18T04:00:00Z	  below 3 feet
2015-08-26T04:00:00Z	  at or greater than 9 feet


name: h2o_feet
tags: location=santa_monica
time			                distinct
----			                --------
2015-08-18T00:00:00Z	  below 3 feet
2015-08-18T02:54:00Z	  between 3 and 6 feet
2015-08-26T01:30:00Z	  between 6 and 9 feet
  • Nest DISTINCT() in COUNT() to get the number of unique field values in level description grouped by the location tag:

    > SELECT COUNT(DISTINCT("level description")) FROM h2o_feet GROUP BY location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			               count
----			               -----
1970-01-01T00:00:00Z	 4

name: h2o_feet
tags: location = santa_monica
time			               count
----			               -----
1970-01-01T00:00:00Z	 3

Note: InfluxDB often uses epoch 0 (1970-01-01T00:00:00Z) as a null timestamp equivalent. If you request a query that has no timestamp to return, such as an aggregation function with an unbounded time range, InfluxDB returns epoch 0 as the timestamp.

INTEGRAL()

INTEGRAL() is not yet functional.

See GitHub Issue #5930 for more information.

MEAN()

Returns the arithmetic mean (average) for the values in a single field. The field type must be int64 or float64.

SELECT MEAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Calculate the average value of the water_level field:

    > SELECT MEAN(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               mean
1970-01-01T00:00:00Z	 4.286791371454075

Note: InfluxDB often uses epoch 0 (1970-01-01T00:00:00Z) as a null timestamp equivalent. If you request a query that has no timestamp to return, such as an aggregation function with an unbounded time range, InfluxDB returns epoch 0 as the timestamp.

  • Calculate the average value in the field water_level at four-day intervals:

    > SELECT MEAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(4d)

CLI response:

name: h2o_feet
--------------
time			               mean
2015-08-17T00:00:00Z	 4.322029861111125
2015-08-21T00:00:00Z	 4.251395512375667
2015-08-25T00:00:00Z	 4.285036458333324
2015-08-29T00:00:00Z	 4.469495801899061
2015-09-02T00:00:00Z	 4.382785378590083
2015-09-06T00:00:00Z	 4.28849666349042
2015-09-10T00:00:00Z	 4.658127604166656
2015-09-14T00:00:00Z	 4.763504687500006
2015-09-18T00:00:00Z	 4.232829850746268

MEDIAN()

Returns the middle value from the sorted values in a single field. The field values must be of type int64 or float64.

SELECT MEDIAN(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Note: MEDIAN() is nearly equivalent to PERCENTILE(field_key, 50), except MEDIAN() returns the average of the two middle values if the field contains an even number of points.

Examples:

  • Select the median value in the field water_level:

    > SELECT MEDIAN(water_level) from h2o_feet

CLI response:

name: h2o_feet
--------------
time			               median
1970-01-01T00:00:00Z	 4.124

Note: InfluxDB often uses epoch 0 (1970-01-01T00:00:00Z) as a null timestamp equivalent. If you request a query that has no timestamp to return, such as an aggregation function with an unbounded time range, InfluxDB returns epoch 0 as the timestamp.

  • Select the median value of water_level between August 18, 2015 at 00:00:00 and August 18, 2015 at 00:30:00 grouped by the location tag:

    > SELECT MEDIAN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			               median
----			               ------
2015-08-18T00:00:00Z	 7.8245

name: h2o_feet
tags: location = santa_monica
time			               median
----			               ------
2015-08-18T00:00:00Z	 2.0575

The returned timestamps mark the start of the relevant time interval for the query. See GitHub Issue #4680 for more information.

SPREAD()

Returns the difference between the minimum and maximum values of a field. The field must be of type int64 or float64.

SELECT SPREAD(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Calculate the difference between the minimum and maximum values across all values in the water_level field:

    > SELECT SPREAD(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			                spread
1970-01-01T00:00:00Z	  10.574

Note: InfluxDB often uses epoch 0 (1970-01-01T00:00:00Z) as a null timestamp equivalent. If you request a query that has no timestamp to return, such as an aggregation function with an unbounded time range, InfluxDB returns epoch 0 as the timestamp.

  • Calculate the difference between the minimum and maximum values in the field water_level for a specific tag and time range and at 30 minute intervals:

    > SELECT SPREAD(water_level) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-09-18T17:00:00Z' AND time < '2015-09-18T20:30:00Z' GROUP BY time(30m)

CLI response:

name: h2o_feet
--------------
time			                spread
2015-09-18T17:00:00Z	  0.16699999999999982
2015-09-18T17:30:00Z	  0.5469999999999997
2015-09-18T18:00:00Z	  0.47499999999999964
2015-09-18T18:30:00Z	  0.2560000000000002
2015-09-18T19:00:00Z	  0.23899999999999988
2015-09-18T19:30:00Z	  0.1609999999999996
2015-09-18T20:00:00Z	  0.16800000000000015

SUM()

Returns the sum of the all values in a single field. The field must be of type int64 or float64.

SELECT SUM(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Calculate the sum of the values in the water_level field:

    > SELECT SUM(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               sum
1970-01-01T00:00:00Z	 67777.66900000002
  • Calculate the sum of the water_level field grouped by five-day intervals:

    > SELECT SUM(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-09-18T17:00:00Z' GROUP BY time(5d)

CLI response:

--------------
time			               sum
2015-08-18T00:00:00Z	 10334.908999999983
2015-08-23T00:00:00Z	 10113.356999999995
2015-08-28T00:00:00Z	 10663.683000000006
2015-09-02T00:00:00Z	 10451.321
2015-09-07T00:00:00Z	 10871.817999999994
2015-09-12T00:00:00Z	 11459.00099999999
2015-09-17T00:00:00Z	 3627.762000000003

Selectors

BOTTOM()

Returns the smallest N values in a single field. The field type must be int64 or float64.

SELECT BOTTOM(<field_key>[,<tag_keys>],<N>)[,<tag_keys>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Select the smallest three values of water_level:

    > SELECT BOTTOM(water_level,3) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               bottom
2015-08-29T14:30:00Z	 -0.61
2015-08-29T14:36:00Z	 -0.591
2015-08-30T15:18:00Z	 -0.594
  • Select the smallest three values of water_level and include the relevant location tag in the output:

    > SELECT BOTTOM(water_level,3),location FROM h2o_feet
    name: h2o_feet
    --------------
    time			               bottom	 location
    2015-08-29T14:30:00Z	 -0.61	  coyote_creek
    2015-08-29T14:36:00Z	 -0.591	 coyote_creek
    2015-08-30T15:18:00Z	 -0.594	 coyote_creek
  • Select the smallest value of water_level within each tag value of location:

    > SELECT BOTTOM(water_level,location,2) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               bottom	 location
2015-08-29T10:36:00Z	 -0.243	 santa_monica
2015-08-29T14:30:00Z	 -0.61	  coyote_creek

The output shows the bottom values of water_level for each tag value of location (santa_monica and coyote_creek).

Note: Queries with the syntax SELECT BOTTOM(<field_key>,<tag_key>,<N>), where the tag has X distinct values, return N or X field values, whichever is smaller, and each returned point has a unique tag value. To demonstrate this behavior, see the results of the above example query where N equals 3 and N equals 1.

  • N = 3

    SELECT BOTTOM(water_level,location,3) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               bottom	 location
2015-08-29T10:36:00Z	 -0.243	 santa_monica
2015-08-29T14:30:00Z	 -0.61	  coyote_creek

InfluxDB returns two values instead of three because the location tag has only two values (santa_monica and coyote_creek).

  • N = 1

    > SELECT BOTTOM(water_level,location,1) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               bottom	 location
2015-08-29T14:30:00Z	 -0.61	  coyote_creek

InfluxDB compares the bottom values of water_level within each tag value of location and returns the smaller value of water_level.

  • Select the smallest two values of water_level between August 18, 2015 at 4:00:00 and August 18, 2015 at 4:18:00 for every tag value of location:

    > SELECT BOTTOM(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' GROUP BY location

CLI response:

name: h2o_feet
tags: location=coyote_creek
time			               bottom
----			               ------
2015-08-18T04:12:00Z	 2.717
2015-08-18T04:18:00Z	 2.625


name: h2o_feet
tags: location=santa_monica
time			               bottom
----			               ------
2015-08-18T04:00:00Z	 3.911
2015-08-18T04:06:00Z	 4.055
  • Select the smallest two values of water_level between August 18, 2015 at 4:00:00 and August 18, 2015 at 4:18:00 in santa_monica:

    > SELECT BOTTOM(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' AND location = 'santa_monica'

CLI response:

name: h2o_feet
--------------
time			               bottom
2015-08-18T04:00:00Z	 3.911
2015-08-18T04:06:00Z	 4.055

Note that in the raw data, water_level equals 4.055 at 2015-08-18T04:06:00Z and at 2015-08-18T04:12:00Z. In the case of a tie, InfluxDB returns the value with the earlier timestamp.

FIRST()

Returns the oldest value (determined by the timestamp) of a single field.

SELECT FIRST(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Select the oldest value of the field water_level where the location is santa_monica:

    > SELECT FIRST(water_level) FROM h2o_feet WHERE location = 'santa_monica'

CLI response:

name: h2o_feet
--------------
time			               first
1970-01-01T00:00:00Z	 2.064

The returned timestamp marks the start of the relevant time interval for the query. See GitHub Issue #4680 for more information.

  • Select the oldest value of the field water_level between 2015-08-18T00:42:00Z and 2015-08-18T00:54:00Z, and output the relevant location tag:

    > SELECT FIRST(water_level),location FROM h2o_feet WHERE time >= '2015-08-18T00:42:00Z' and time <= '2015-08-18T00:54:00Z'

CLI response:

name: h2o_feet
--------------
time			               first	 location
2015-08-18T00:42:00Z	 7.234	 coyote_creek
  • Select the oldest values of the field water_level grouped by the location tag:

    > SELECT FIRST(water_level) FROM h2o_feet GROUP BY location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			               first
----			               -----
1970-01-01T00:00:00Z	 8.12

name: h2o_feet
tags: location = santa_monica
time			               first
----			               -----
1970-01-01T00:00:00Z	 2.064

LAST()

Returns the newest value (determined by the timestamp) of a single field.

SELECT LAST(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Select the newest value of the field water_level where the location is santa_monica:

    > SELECT LAST(water_level) FROM h2o_feet WHERE location = 'santa_monica'

CLI response:

name: h2o_feet
--------------
time			               last
1970-01-01T00:00:00Z	 4.938

The returned timestamp marks the start of the relevant time interval for the query. See GitHub Issue #4680 for more information.

  • Select the newest value of the field water_level between 2015-08-18T00:42:00Z and 2015-08-18T00:54:00Z, and output the relevant location tag:

    > SELECT LAST(water_level),location FROM h2o_feet WHERE time >= '2015-08-18T00:42:00Z' and time <= '2015-08-18T00:54:00Z'

CLI response:

name: h2o_feet
--------------
time			               last	  location
2015-08-18T00:42:00Z	 6.982	 coyote_creek
  • Select the newest values of the field water_level grouped by the location tag:

    > SELECT LAST(water_level) FROM h2o_feet GROUP BY location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			               last
----			               ----
1970-01-01T00:00:00Z	 3.235

name: h2o_feet
tags: location = santa_monica
time			               last
----			               ----
1970-01-01T00:00:00Z	 4.938

Note: LAST() does not return points that occur after now() unless the WHERE clause specifies that time range. See Frequently Encountered Issues for how to query after now().

MAX()

Returns the highest value in a single field. The field must be of type int64 or float64.

SELECT MAX(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Select the maximum water_level in the measurement h2o_feet:

    > SELECT MAX(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               max
1970-01-01T00:00:00Z	 9.964

The returned timestamp marks the start of the relevant time interval for the query. See GitHub Issue #4680 for more information.

  • Select the maximum water_level in the measurement h2o_feet and output the relevant location tag:

    > SELECT MAX(water_level),location FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               max	   location
1970-01-01T00:00:00Z	 9.964	 coyote_creek
  • Select the maximum water_level in the measurement h2o_feet between August 18, 2015 at midnight and August 18, 2015 at 00:48 grouped at 12 minute intervals and by the location tag:

    > SELECT MAX(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:54:00Z' GROUP BY time(12m), location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			              max
----		  	            ---
2015-08-18T00:00:00Z	8.12
2015-08-18T00:12:00Z	7.887
2015-08-18T00:24:00Z	7.635
2015-08-18T00:36:00Z	7.372
2015-08-18T00:48:00Z	7.11

name: h2o_feet
tags: location = santa_monica
time			              max
----		  	            ---
2015-08-18T00:00:00Z	2.116
2015-08-18T00:12:00Z	2.126
2015-08-18T00:24:00Z	2.051
2015-08-18T00:36:00Z	2.067
2015-08-18T00:48:00Z	1.991

MIN()

Returns the lowest value in a single field. The field must be of type int64 or float64.

SELECT MIN(<field_key>)[,<tag_key(s)>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Select the minimum water_level in the measurement h2o_feet:

    > SELECT MIN(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               min
1970-01-01T00:00:00Z	 -0.61

The returned timestamp marks the start of the relevant time interval for the query. See GitHub Issue #4680 for more information.

  • Select the minimum water_level in the measurement h2o_feet and output the relevant location tag:

    > SELECT MIN(water_level),location FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			              min	   location
1970-01-01T00:00:00Z	-0.61	 coyote_creek
  • Select the minimum water_level in the measurement h2o_feet between August 18, 2015 at midnight and August 18, at 00:48 grouped at 12 minute intervals and by the location tag:

    > SELECT MIN(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:54:00Z' GROUP BY time(12m), location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			               min
----			               ---
2015-08-18T00:00:00Z	 8.005
2015-08-18T00:12:00Z	 7.762
2015-08-18T00:24:00Z	 7.5
2015-08-18T00:36:00Z	 7.234
2015-08-18T00:48:00Z	 7.11

name: h2o_feet
tags: location = santa_monica
time			               min
----			               ---
2015-08-18T00:00:00Z	 2.064
2015-08-18T00:12:00Z	 2.028
2015-08-18T00:24:00Z	 2.041
2015-08-18T00:36:00Z	 2.057
2015-08-18T00:48:00Z	 1.991

PERCENTILE()

Returns the Nth percentile value for the sorted values of a single field. The field must be of type int64 or float64. The percentile N must be an integer or floating point number between 0 and 100, inclusive.

SELECT PERCENTILE(<field_key>, <N>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Calculate the fifth percentile of the field water_level where the tag location equals coyote_creek:

    > SELECT PERCENTILE(water_level,5) FROM h2o_feet WHERE location = 'coyote_creek'

CLI response:

name: h2o_feet
--------------
time			               percentile
1970-01-01T00:00:00Z	 1.148

The value 1.148 is larger than 5% of the values in water_level where location equals coyote_creek.

  • Calculate the 100th percentile of the field water_level grouped by the location tag:

    > SELECT PERCENTILE(water_level, 100) FROM h2o_feet GROUP BY location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			               percentile
----			               ----------
1970-01-01T00:00:00Z	 9.964

name: h2o_feet
tags: location = santa_monica
time			               percentile
----			               ----------
1970-01-01T00:00:00Z	 7.205

Notice that PERCENTILE(<field_key>,100) is equivalent to MAX(<field_key>).

Currently, PERCENTILE(<field_key>,0) is not equivalent to MIN(<field_key>). See GitHub Issue #4418 for more information.

Note: PERCENTILE(<field_key>, 50) is nearly equivalent to MEDIAN(), except MEDIAN() returns the average of the two middle values if the field contains an even number of points.

TOP()

Returns the largest N values in a single field. The field type must be int64 or float64.

SELECT TOP(<field_key>[,<tag_keys>],<N>)[,<tag_keys>] FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Select the largest three values of water_level:

    > SELECT TOP(water_level,3) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               top
2015-08-29T07:18:00Z	 9.957
2015-08-29T07:24:00Z	 9.964
2015-08-29T07:30:00Z	 9.954
  • Select the largest three values of water_level and include the relevant location tag in the output:

    > SELECT TOP(water_level,3),location FROM h2o_feet
    name: h2o_feet
    --------------
    time			               top	   location
    2015-08-29T07:18:00Z	 9.957	 coyote_creek
    2015-08-29T07:24:00Z	 9.964	 coyote_creek
    2015-08-29T07:30:00Z	 9.954	 coyote_creek
  • Select the largest value of water_level within each tag value of location:

    > SELECT TOP(water_level,location,2) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               top	   location
2015-08-29T03:54:00Z	 7.205	 santa_monica
2015-08-29T07:24:00Z	 9.964	 coyote_creek

The output shows the top values of water_level for each tag value of location (santa_monica and coyote_creek).

Note: Queries with the syntax SELECT TOP(<field_key>,<tag_key>,<N>), where the tag has X distinct values, return N or X field values, whichever is smaller, and each returned point has a unique tag value. To demonstrate this behavior, see the results of the above example query where N equals 3 and N equals 1.

  • N = 3

    > SELECT TOP(water_level,location,3) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               top	   location
2015-08-29T03:54:00Z	 7.205	 santa_monica
2015-08-29T07:24:00Z	 9.964	 coyote_creek

InfluxDB returns two values instead of three because the location tag has only two values (santa_monica and coyote_creek).

  • N = 1

    > SELECT TOP(water_level,location,1) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               top	   location
2015-08-29T07:24:00Z	 9.964	 coyote_creek

InfluxDB compares the top values of water_level within each tag value of location and returns the larger value of water_level.

  • Select the largest two values of water_level between August 18, 2015 at 4:00:00 and August 18, 2015 at 4:18:00 for every tag value of location:

    > SELECT TOP(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' GROUP BY location

CLI response:

name: h2o_feet
tags: location=coyote_creek
time			               top
----			               ---
2015-08-18T04:00:00Z	 2.943
2015-08-18T04:06:00Z	 2.831


name: h2o_feet
tags: location=santa_monica
time			               top
----			               ---
2015-08-18T04:06:00Z	 4.055
2015-08-18T04:18:00Z	 4.124
  • Select the largest two values of water_level between August 18, 2015 at 4:00:00 and August 18, 2015 at 4:18:00 in santa_monica:

    > SELECT TOP(water_level,2) FROM h2o_feet WHERE time >= '2015-08-18T04:00:00Z' AND time < '2015-08-18T04:24:00Z' AND location = 'santa_monica'

CLI response:

name: h2o_feet
--------------
time			               top
2015-08-18T04:06:00Z	 4.055
2015-08-18T04:18:00Z	 4.124

Note that in the raw data, water_level equals 4.055 at 2015-08-18T04:06:00Z and at 2015-08-18T04:12:00Z. In the case of a tie, InfluxDB returns the value with the earlier timestamp.

Transformations

CEILING()

CEILING() is not yet functional.

See GitHub Issue #5930 for more information.

DERIVATIVE()

Returns the rate of change for the values in a single field in a series. InfluxDB calculates the difference between chronological field values and converts those results into the rate of change per unit. The unit argument is optional and, if not specified, defaults to one second (1s).

The basic DERIVATIVE() query:

SELECT DERIVATIVE(<field_key>, [<unit>]) FROM <measurement_name> [WHERE <stuff>]

Valid time specifications for unit are:
u microseconds
s seconds
m minutes
h hours
d days
w weeks

DERIVATIVE() also works with a nested function coupled with a GROUP BY time() clause. For queries that include those options, InfluxDB first performs the aggregation, selection, or transformation across the time interval specified in the GROUP BY time() clause. It then calculates the difference between chronological field values and converts those results into the rate of change per unit. The unit argument is optional and, if not specified, defaults to the same interval as the GROUP BY time() interval.

The DERIVATIVE() query with an aggregation function and GROUP BY time() clause:

SELECT DERIVATIVE(AGGREGATION_FUNCTION(<field_key>),[<unit>]) FROM <measurement_name> WHERE <stuff> GROUP BY time(<aggregation_interval>)

Examples:

The following examples work with the first six observations of the water_level field in the measurement h2o_feet with the tag set location = santa_monica:

name: h2o_feet
--------------
time			               water_level
2015-08-18T00:00:00Z	 2.064
2015-08-18T00:06:00Z	 2.116
2015-08-18T00:12:00Z	 2.028
2015-08-18T00:18:00Z	 2.126
2015-08-18T00:24:00Z	 2.041
2015-08-18T00:30:00Z	 2.051
  • DERIVATIVE() with a single argument:
    Calculate the rate of change per one second

    > SELECT DERIVATIVE(water_level) FROM h2o_feet WHERE location = 'santa_monica' LIMIT 5

CLI response:

name: h2o_feet
--------------
time			               derivative
2015-08-18T00:06:00Z	 0.00014444444444444457
2015-08-18T00:12:00Z	 -0.00024444444444444465
2015-08-18T00:18:00Z	 0.0002722222222222218
2015-08-18T00:24:00Z	 -0.000236111111111111
2015-08-18T00:30:00Z	 2.777777777777842e-05

Notice that the first field value (0.00014) in the derivative column is not 0.052 (the difference between the first two field values in the raw data: 2.116 - 2.604 = 0.052). Because the query does not specify the unit option, InfluxDB automatically calculates the rate of change per one second, not the rate of change per six minutes. The calculation of the first value in the derivative column looks like this:

(2.116 - 2.064) / (360s / 1s)

The numerator is the difference between chronological field values. The denominator is the difference between the relevant timestamps in seconds (2015-08-18T00:06:00Z - 2015-08-18T00:00:00Z = 360s) divided by unit (1s). This returns the rate of change per second from 2015-08-18T00:00:00Z to 2015-08-18T00:06:00Z.

  • DERIVATIVE() with two arguments:
    Calculate the rate of change per six minutes

    > SELECT DERIVATIVE(water_level,6m) FROM h2o_feet WHERE location = 'santa_monica' LIMIT 5

CLI response:

name: h2o_feet
--------------
time			               derivative
2015-08-18T00:06:00Z	 0.052000000000000046
2015-08-18T00:12:00Z	 -0.08800000000000008
2015-08-18T00:18:00Z	 0.09799999999999986
2015-08-18T00:24:00Z	 -0.08499999999999996
2015-08-18T00:30:00Z	 0.010000000000000231

The calculation of the first value in the derivative column looks like this:

(2.116 - 2.064) / (6m / 6m)

The numerator is the difference between chronological field values. The denominator is the difference between the relevant timestamps in minutes (2015-08-18T00:06:00Z - 2015-08-18T00:00:00Z = 6m) divided by unit (6m). This returns the rate of change per six minutes from 2015-08-18T00:00:00Z to 2015-08-18T00:06:00Z.

  • DERIVATIVE() with two arguments:
    Calculate the rate of change per 12 minutes

    > SELECT DERIVATIVE(water_level,12m) FROM h2o_feet WHERE location = 'santa_monica' LIMIT 5

CLI response:

name: h2o_feet
--------------
time			               derivative
2015-08-18T00:06:00Z	 0.10400000000000009
2015-08-18T00:12:00Z	 -0.17600000000000016
2015-08-18T00:18:00Z	 0.19599999999999973
2015-08-18T00:24:00Z	 -0.16999999999999993
2015-08-18T00:30:00Z	 0.020000000000000462

The calculation of the first value in the derivative column looks like this:

(2.116 - 2.064 / (6m / 12m)

The numerator is the difference between chronological field values. The denominator is the difference between the relevant timestamps in minutes (2015-08-18T00:06:00Z - 2015-08-18T00:00:00Z = 6m) divided by unit (12m). This returns the rate of change per 12 minutes from 2015-08-18T00:00:00Z to 2015-08-18T00:06:00Z.

Note: Specifying 12m as the unit does not mean that InfluxDB calculates the rate of change for every 12 minute interval of data. Instead, InfluxDB calculates the rate of change per 12 minutes for each interval of valid data.

  • DERIVATIVE() with one argument, a function, and a GROUP BY time() clause:
    Select the MAX() value at 12 minute intervals and calculate the rate of change per 12 minutes

    > SELECT DERIVATIVE(MAX(water_level)) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY time(12m)

CLI response:

name: h2o_feet
--------------
time			               derivative
2015-08-18T00:12:00Z	 0.009999999999999787
2015-08-18T00:24:00Z	 -0.07499999999999973

To get those results, InfluxDB first aggregates the data by calculating the MAX() water_level at the time interval specified in the GROUP BY time() clause (12m). Those results look like this:

name: h2o_feet
--------------
time			               max
2015-08-18T00:00:00Z	 2.116
2015-08-18T00:12:00Z	 2.126
2015-08-18T00:24:00Z	 2.051

Second, InfluxDB calculates the rate of change per 12m (the same interval as the GROUP BY time() interval) to get the results in the derivative column above. The calculation of the first value in the derivative column looks like this:

(2.126 - 2.116) / (12m / 12m)

The numerator is the difference between chronological field values. The denominator is the difference between the relevant timestamps in minutes (2015-08-18T00:12:00Z - 2015-08-18T00:00:00Z = 12m) divided by unit (12m). This returns rate of change per 12 minutes for the aggregated data from 2015-08-18T00:00:00Z to 2015-08-18T00:12:00Z.

  • DERIVATIVE() with two arguments, a function, and a GROUP BY time() clause:
    Aggregate the data to 18 minute intervals and calculate the rate of change per six minutes

    > SELECT DERIVATIVE(SUM(water_level),6m) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' AND time < '2015-08-18T00:36:00Z' GROUP BY time(18m)

CLI response:

name: h2o_feet
--------------
time			               derivative
2015-08-18T00:18:00Z	 0.0033333333333332624

To get those results, InfluxDB first aggregates the data by calculating the SUM() of water_level at the time interval specified in the GROUP BY time() clause (18m). The aggregated results look like this:

name: h2o_feet
--------------
time			               sum
2015-08-18T00:00:00Z	 6.208
2015-08-18T00:18:00Z	 6.218

Second, InfluxDB calculates the rate of change per unit (6m) to get the results in the derivative column above. The calculation of the first value in the derivative column looks like this:

(6.218 - 6.208) / (18m / 6m)

The numerator is the difference between chronological field values. The denominator is the difference between the relevant timestamps in minutes (2015-08-18T00:18:00Z - 2015-08-18T00:00:00Z = 18m) divided by unit (6m). This returns the rate of change per six minutes for the aggregated data from 2015-08-18T00:00:00Z to 2015-08-18T00:18:00Z.

DIFFERENCE()

Returns the difference between consecutive chronological values in a single field. The field type must be int64 or float64.

The basic DIFFERENCE() query:

SELECT DIFFERENCE(<field_key>) FROM <measurement_name> [WHERE <stuff>]

The DIFFERENCE() query with a nested function and a GROUP BY time() clause:

SELECT DIFFERENCE(<function>(<field_key>)) FROM <measurement_name> WHERE <stuff> GROUP BY time(<time_interval>)

Functions that work with DIFFERENCE() include COUNT(), MEAN(), MEDIAN(), SUM(), FIRST(), LAST(), MIN(), MAX(), and PERCENTILE().

Examples:

The following examples focus on the field water_level in santa_monica between 2015-08-18T00:00:00Z and 2015-08-18T00:36:00Z:

> SELECT water_level FROM h2o_feet WHERE location='santa_monica' AND time >= '2015-08-18T00:00:00Z' and time <= '2015-08-18T00:36:00Z'
name: h2o_feet
--------------
time			                water_level
2015-08-18T00:00:00Z	  2.064
2015-08-18T00:06:00Z	  2.116
2015-08-18T00:12:00Z	  2.028
2015-08-18T00:18:00Z	  2.126
2015-08-18T00:24:00Z	  2.041
2015-08-18T00:30:00Z	  2.051
2015-08-18T00:36:00Z	  2.067
  • Calculate the difference between water_level values:

    > SELECT DIFFERENCE(water_level) FROM h2o_feet WHERE location='santa_monica' AND time >= '2015-08-18T00:00:00Z' and time <= '2015-08-18T00:36:00Z'
    

CLI response:

name: h2o_feet
--------------
time			                difference
2015-08-18T00:06:00Z	  0.052000000000000046
2015-08-18T00:12:00Z	  -0.08800000000000008
2015-08-18T00:18:00Z	  0.09799999999999986
2015-08-18T00:24:00Z	  -0.08499999999999996
2015-08-18T00:30:00Z	  0.010000000000000231
2015-08-18T00:36:00Z	  0.016000000000000014

The first value in the difference column is 2.116 - 2.064, and the second value in the difference column is 2.028 - 2.116. Please note that the extra decimal places are the result of floating point inaccuracies.

  • Select the minimum water_level values at 12 minute intervals and calculate the difference between those values:

    > SELECT DIFFERENCE(MIN(water_level)) FROM h2o_feet WHERE location='santa_monica' AND time >= '2015-08-18T00:00:00Z' and time <= '2015-08-18T00:36:00Z' GROUP BY time(12m)
    

CLI response:

name: h2o_feet
--------------
time			                difference
2015-08-18T00:12:00Z	  -0.03600000000000003
2015-08-18T00:24:00Z	  0.0129999999999999
2015-08-18T00:36:00Z	  0.026000000000000245

To get the values in the difference column, InfluxDB first selects the MIN() values at 12 minute intervals:

> SELECT MIN(water_level) FROM h2o_feet WHERE location='santa_monica' AND time >= '2015-08-18T00:00:00Z' and time <= '2015-08-18T00:36:00Z' GROUP BY time(12m)
name: h2o_feet
--------------
time			                min
2015-08-18T00:00:00Z  	2.064
2015-08-18T00:12:00Z  	2.028
2015-08-18T00:24:00Z  	2.041
2015-08-18T00:36:00Z  	2.067

It then uses those values to calculate the difference between chronological values; the first value in the difference column is 2.028 - 2.064.

FLOOR()

FLOOR() is not yet functional.

See GitHub Issue #5930 for more information.

HISTOGRAM()

HISTOGRAM() is not yet functional.

See GitHub Issue #5930 for more information.

MOVING_AVERAGE()

Returns the moving average across a window of consecutive chronological field values for a single field. The field type must be int64 or float64.

The basic MOVING_AVERAGE() query:

SELECT MOVING_AVERAGE(<field_key>,<window>) FROM <measurement_name> [WHERE <stuff>]

The MOVING_AVERAGE() query with a nested function and a GROUP BY time() clause:

SELECT MOVING_AVERAGE(<function>(<field_key>),<window>) FROM <measurement_name> WHERE <stuff> GROUP BY time(<time_interval>)

Functions that work with MOVING_AVERAGE() include COUNT(), MEAN(), MEDIAN(), SUM(), FIRST(), LAST(), MIN(), MAX(), and PERCENTILE().

Examples:

The following examples focus on the field water_level in santa_monica between 2015-08-18T00:00:00Z and 2015-08-18T00:36:00Z:

> SELECT water_level FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' and time <= '2015-08-18T00:36:00Z'
name: h2o_feet
--------------
time			                water_level
2015-08-18T00:00:00Z	  2.064
2015-08-18T00:06:00Z	  2.116
2015-08-18T00:12:00Z	  2.028
2015-08-18T00:18:00Z	  2.126
2015-08-18T00:24:00Z	  2.041
2015-08-18T00:30:00Z	  2.051
2015-08-18T00:36:00Z	  2.067
  • Calculate the moving average across every 2 field values:

    > SELECT MOVING_AVERAGE(water_level,2) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' and time <= '2015-08-18T00:36:00Z'
    

CLI response:

name: h2o_feet
--------------
time			                moving_average
2015-08-18T00:06:00Z	  2.09
2015-08-18T00:12:00Z	  2.072
2015-08-18T00:18:00Z	  2.077
2015-08-18T00:24:00Z	  2.0835
2015-08-18T00:30:00Z	  2.0460000000000003
2015-08-18T00:36:00Z	  2.059

The first value in the moving_average column is the average of 2.064 and 2.116, the second value in the moving_average column is the average of 2.116 and 2.028.

  • Select the minimum water_level at 12 minute intervals and calculate the moving average across every 2 field values:

    > SELECT MOVING_AVERAGE(MIN(water_level),2) FROM h2o_feet WHERE location = 'santa_monica' AND time >= '2015-08-18T00:00:00Z' and time <= '2015-08-18T00:36:00Z' GROUP BY time(12m)
    

CLI response:

name: h2o_feet
--------------
time			                moving_average
2015-08-18T00:12:00Z	  2.0460000000000003
2015-08-18T00:24:00Z	  2.0345000000000004
2015-08-18T00:36:00Z	  2.0540000000000003

To get those results, InfluxDB first selects the MIN() water_level for every 12 minute interval:

name: h2o_feet
--------------
time			                min
2015-08-18T00:00:00Z	  2.064
2015-08-18T00:12:00Z	  2.028
2015-08-18T00:24:00Z	  2.041
2015-08-18T00:36:00Z	  2.067

It then uses those values to calculate the moving average across every 2 field values; the first result in the moving_average column the average of 2.064 and 2.028, and the second result is the average of 2.028 and 2.041.

NON_NEGATIVE_DERIVATIVE()

Returns the non-negative rate of change for the values in a single field in a series. InfluxDB calculates the difference between chronological field values and converts those results into the rate of change per unit. The unit argument is optional and, if not specified, defaults to one second (1s).

The basic NON_NEGATIVE_DERIVATIVE() query:

SELECT NON_NEGATIVE_DERIVATIVE(<field_key>, [<unit>]) FROM <measurement_name> [WHERE <stuff>]

Valid time specifications for unit are:
u microseconds
s seconds
m minutes
h hours
d days
w weeks

NON_NEGATIVE_DERIVATIVE() also works with a nested function coupled with a GROUP BY time() clause. For queries that include those options, InfluxDB first performs the aggregation, selection, or transformation across the time interval specified in the GROUP BY time() clause. It then calculates the difference between chronological field values and converts those results into the rate of change per unit. The unit argument is optional and, if not specified, defaults to the same interval as the GROUP BY time() interval.

The NON_NEGATIVE_DERIVATIVE() query with an aggregation function and GROUP BY time() clause:

SELECT NON_NEGATIVE_DERIVATIVE(AGGREGATION_FUNCTION(<field_key>),[<unit>]) FROM <measurement_name> WHERE <stuff> GROUP BY time(<aggregation_interval>)

See DERIVATIVE() for example queries. All query results are the same for DERIVATIVE() and NON_NEGATIVE_DERIVATIVE except that NON_NEGATIVE_DERIVATIVE() returns only the positive values.

STDDEV()

Returns the standard deviation of the values in a single field. The field must be of type int64 or float64.

SELECT STDDEV(<field_key>) FROM <measurement_name> [WHERE <stuff>] [GROUP BY <stuff>]

Examples:

  • Calculate the standard deviation for the water_level field in the measurement h2o_feet:

    > SELECT STDDEV(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               stddev
1970-01-01T00:00:00Z	 2.279144584196145
  • Calculate the standard deviation for the water_level field between August 18, 2015 at midnight and September 18, 2015 at noon grouped at one week intervals and by the location tag:

    > SELECT STDDEV(water_level) FROM h2o_feet WHERE time >= '2015-08-18T00:00:00Z' and time < '2015-09-18T12:06:00Z' GROUP BY time(1w), location

CLI response:

name: h2o_feet
tags: location = coyote_creek
time			               stddev
----			               ------
2015-08-13T00:00:00Z	 2.2437263080193985
2015-08-20T00:00:00Z	 2.121276150144719
2015-08-27T00:00:00Z	 3.0416122170786215
2015-09-03T00:00:00Z	 2.5348065025435207
2015-09-10T00:00:00Z	 2.584003954882673
2015-09-17T00:00:00Z	 2.2587514836274414

name: h2o_feet
tags: location = santa_monica
time			               stddev
----			               ------
2015-08-13T00:00:00Z	 1.11156344587553
2015-08-20T00:00:00Z	 1.0909849279082366
2015-08-27T00:00:00Z	 1.9870116180096962
2015-09-03T00:00:00Z	 1.3516778450902067
2015-09-10T00:00:00Z	 1.4960573811500588
2015-09-17T00:00:00Z	 1.075701669442093

Include multiple functions in a single query

Separate multiple functions in one query with a ,.

Calculate the minimum water_level and the maximum water_level with a single query:

> SELECT MIN(water_level), MAX(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               min	   max
1970-01-01T00:00:00Z	 -0.61	 9.964

Change the value reported for intervals with no data with fill()

By default, queries with an InfluxQL function report null values for intervals with no data. Append fill() to the end of your query to alter that value. For a complete discussion of fill(), see Data Exploration.

Note: fill() works differently with COUNT(). See the documentation on COUNT() for a function-specific use of fill().

Rename the output column’s title with AS

By default, queries that include a function output a column that has the same name as that function. If you’d like a different column name change it with an AS clause.

Before:

> SELECT MEAN(water_level) FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               mean
1970-01-01T00:00:00Z	 4.442107025822521

After:

> SELECT MEAN(water_level) AS dream_name FROM h2o_feet

CLI response:

name: h2o_feet
--------------
time			               dream_name
1970-01-01T00:00:00Z	 4.442107025822521