WindowNode

This is archived documentation for InfluxData product versions that are no longer maintained. For newer documentation, see the latest InfluxData documentation.

Windows data over time. A window has a length defined by period and a frequency at which it emits the window to the pipeline.

Example:

    stream
        .window()
            .period(10m)
            .every(5m)
        .httpOut('recent')

The above windowing example emits a window to the pipeline every 5 minutes and the window contains the last 10 minutes worth of data. As a result each time the window is emitted it contains half new data and half old data.

NOTE: Time for a window (or any node) is implemented by inspecting the times on the incoming data points. As a result if the incoming data stream stops then no more windows will be emitted because time is no longer increasing for the window node.

Properties

Property methods modify state on the calling node. They do not add another node to the pipeline, and always return a reference to the calling node.

Align

Wether to align the window edges with the zero time. If not aligned the window starts and ends relative to the first data point it receives.

node.align()

Every

How often the current window is emitted into the pipeline.

node.every(value time.Duration)

Period

The period, or length in time, of the window.

node.period(value time.Duration)

Chaining Methods

Chaining methods create a new node in the pipeline as a child of the calling node. They do not modify the calling node.

Alert

Create an alert node, which can trigger alerts.

node.alert()

Returns: AlertNode

Deadman

Helper function for creating an alert on low throughput, aka deadman's switch.

  • Threshold – trigger alert if throughput drops below threshold in points/interval.
  • Interval – how often to check the throughput.
  • Expressions – optional list of expressions to also evaluate. Useful for time of day alerting.

Example:

    var data = stream.from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data.deadman(100.0, 10s)
    //Do normal processing of data
    data....

The above is equivalent to this Example:

    var data = stream.from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    data.stats(10s)
          .derivative('collected')
              .unit(10s)
              .nonNegative()
          .alert()
              .id('node \'stream0\' in task \'{{ .TaskName }}\'')
              .message('{{ .ID }} is {{ if eq .Level "OK" }}alive{{ else }}dead{{ end }}: {{ index .Fields "collected" | printf "%0.3f" }} points/10s.')
              .crit(lamdba: "collected" <= 100.0)
    //Do normal processing of data
    data....

The id and message alert properties can be configured globally via the 'deadman' configuration section.

Since the AlertNode is the last piece it can be further modified as normal. Example:

    var data = stream.from()...
    // Trigger critical alert if the throughput drops below 100 points per 1s and checked every 10s.
    data.deadman(100.0, 10s).slack().channel('#dead_tasks')
    //Do normal processing of data
    data....

You can specify additional lambda expressions to further constrain when the deadman's switch is triggered. Example:

    var data = stream.from()...
    // Trigger critical alert if the throughput drops below 100 points per 10s and checked every 10s.
    // Only trigger the alert if the time of day is between 8am-5pm.
    data.deadman(100.0, 10s, lambda: hour("time") >= 8 AND hour("time") <= 17)
    //Do normal processing of data
    data....
node.deadman(threshold float64, interval time.Duration, expr ...tick.Node)

Returns: AlertNode

Derivative

Create a new node that computes the derivative of adjacent points.

node.derivative(field string)

Returns: DerivativeNode

Eval

Create an eval node that will evaluate the given transformation function to each data point. A list of expressions may be provided and will be evaluated in the order they are given and results of previous expressions are made available to later expressions.

node.eval(expressions ...tick.Node)

Returns: EvalNode

GroupBy

Group the data by a set of tags.

Can pass literal * to group by all dimensions. Example:

    .groupBy(*)
node.groupBy(tag ...interface{})

Returns: GroupByNode

HttpOut

Create an http output node that caches the most recent data it has received. The cached data is available at the given endpoint. The endpoint is the relative path from the API endpoint of the running task. For example if the task endpoint is at "/api/v1/task/<task_name>" and endpoint is "top10", then the data can be requested from "/api/v1/task/<task_name>/top10".

node.httpOut(endpoint string)

Returns: HTTPOutNode

InfluxDBOut

Create an influxdb output node that will store the incoming data into InfluxDB.

node.influxDBOut()

Returns: InfluxDBOutNode

Join

Join this node with other nodes. The data is joined on timestamp.

node.join(others ...Node)

Returns: JoinNode

MapReduce

Perform a map-reduce operation on the data. The built-in functions under influxql provide the selection,aggregation, and transformation functions from the InfluxQL language.

MapReduce may be applied to either a batch or a stream edge. In the case of a batch each batch is passed to the mapper independently. In the case of a stream all incoming data points that have the exact same time are combined into a batch and sent to the mapper.

node.mapReduce(mr MapReduceInfo)

Returns: ReduceNode

Sample

Create a new node that samples the incoming points or batches.

One point will be emitted every count or duration specified.

node.sample(rate interface{})

Returns: SampleNode

Stats

Create a new stream of data that contains the internal statistics of the node. The interval represents how often to emit the statistics based on real time. This means the interval time is independent of the times of the data points the source node is receiving.

node.stats(interval time.Duration)

Returns: StatsNode

Union

Perform the union of this node and all other given nodes.

node.union(node ...Node)

Returns: UnionNode

Where

Create a new node that filters the data stream by a given expression.

node.where(expression tick.Node)

Returns: WhereNode

Window

Create a new node that windows the stream by time.

NOTE: Window can only be applied to stream edges.

node.window()

Returns: WindowNode